This website uses cookies to ensure you get the best possible experience. See our Cookies Policy.

PMG Digital Made for Humans

Using Netflix To Make Sense Of Machine Learning

2 MINUTE READ | March 20, 2017

Using Netflix To Make Sense Of Machine Learning

Machine learning is one of the most common buzzwords thrown around the world of digital marketing today. For all of the powerful and amazing capabilities this data science function possess, it grinds my gears just having to use it in this post. I want to attempt to demystify this played out phrase, by showing that anyone can create a “machine learning algorithm” in 15 minutes.

The most widespread usages of machine learning that virtually everyone touches on a day to day basis are recommendation engines, which use pre-existing behavior data to predict future actions. Think of a time when Amazon was able to predict that you would need a helmet to go with your shiny new goggles, or when Netflix knew that Pulp Fiction was perfect for your binging marathon of Tarantino films. These are all examples of the most core principles that machine learning provides.

In its simplest form machine learning is creating and training models that are learned from raw data sets.

Typically, our goal will be to use existing data to develop models that can predict outcomes for a behavior/output, such as what movies you would enjoy watching on Netflix.

This very basic exercise from a Siraj Naval’s coding challenge video helps us to begin to work through the most basic forms of machine learning. Using numpy to handle the raw data and LightFM (a basic recommendation engine), we can walk through the steps of creating our own personal Netflix-esque algorithm in a flash. A sample output from this challenge would look something like this:

In under 50 lines of code, we can import some data (Netflix movie catalog), train the data based on pre-existing variables(likes/ratings etc.), and print an output that allows you to recommend a movie an individual user in a database would like to watch.

Insights meet inbox

Sign up for weekly articles & resources.

The actual algorithm that powers Netflix’s recommendation engine is infinitely more nuanced, but the point is that the basic steps in training a computer to predict future preferences intelligently are a perfect example of how machine learning functions in our day to day lives.


Posted by John Stewart

Related Content

thumbnail image

Get Informed

PMG’s Predictive Dashboard Wins Innovation Award

1 MINUTE READ | September 28, 2021

Get Informed

The Road to Recovery for the Travel Industry

5 MINUTES READ | November 19, 2020

thumbnail image

Get Informed

Facebook Details Approach to Mobile Industry Changes

4 MINUTES READ | August 31, 2020

Get Inspired

Considerations for Reengaging New Online Customers

1 MINUTE READ | April 29, 2020

Get Informed

EMEA Search Trends Amid COVID-19

8 MINUTES READ | April 28, 2020

thumbnail image

Get Informed

A Permanent Shift Into Retail Media

1 MINUTE READ | April 23, 2020

Get Informed

Social eCommerce is The Darling of Cyber Weekend

4 MINUTES READ | December 2, 2019

thumbnail image

Get Informed

Reports of Amazon Clean Room Draws Attention of Advertisers

2 MINUTES READ | September 4, 2019

Get Informed

PMG Shares Thoughts About Rumored Amazon Data Clean Room

1 MINUTE READ | August 28, 2019

Get Inspired

Working with an Automation Mindset

5 MINUTES READ | August 22, 2019

ALL POSTS